The Synthesis and Characterization of Substituted Olivines and Layered Manganese Oxides

M. Stanley Whittingham State University of New York at Binghamton May 20, 2009

Project ID # es_22_whittingham

Overview

Timeline

- Project start date: 06-01-2007
- Project end date: 05-31-2010
- Percent complete: Continuing

Budget

- Total project funding
 - DOE share: 100% \$
 - Contractor share: Personnel
- Funding received
 - FY08: 188k\$
 - FT09: 265k\$
- Funding requested
 - FY10: 280k\$

Barriers

- Barriers addressed
 - Lower-cost,
 - Higher power,
 - Higher capacity and
 - Abuse-tolerant safer cathodes

Partners

- SUNY Stony Brook, LBNL, BNL, U. Maryland
- Primet, and other companies

Objectives of Work

- The primary objectives of our work are to find:
 - Lower-cost and higher capacity cathodes,
 exceeding 200 Ah/kg (lab theoretical).
 - High rate HEV and PHEV compatible cathodes
 - Both of the above are to be based on environmentally benign materials

Milestones

- a) Characterize the electronically stabilized manganese oxide, determine the rate capability *vs.* Co content, determine the role of Ni and understand its disorder to obtain a stable high rate abuse tolerant cathode (including application to HEVs), determine the optimum composition and compare the best samples with the base case cathodes. (Sep. 09).
 - **Go**
- b) Determine feasibility of aliovalent doping of olivine, LiMPO₄, determine optimum particle size and evaluate other phosphate structures containing Fe and Mn and compare them with high temperature LiFePO₄. (Sept. 09)
 - Go doping allows nanostructure and higher capacity
- c) Identify materials that can undergo more than one electron per redox center.
 - New project just getting underway

Approach to Improved Cathodes

- Place emphasis on layered manganese dioxides, modified with other transition metal compounds
 - Minimizing the use of cobalt; go to 20 or 10 %
 - Determine structure, stability and electrochemical behavior
 - Understand the atomic disorder, and relate to electrochemical behavior
 - Emphasis on role of Ni, and its tendency to migrate during cycling
 - Understand the impact of moving to Li-rich compounds
- Place emphasis on the low cost safe transition metal phosphates
 - Understand their synthesis and structure, including disorder
 - Determine solubility ranges for isovalent mixed metals, Li(MnMgFeCu...)PO₄
 - Determine aliovalent and isovalent substitution for range of metals
 - Search for new phosphate structures with a higher storage capacity

Technical Accomplishments: Barriers being Addressed

Stan Whittingham SUNY at Binghamton

Lower-cost, higher power, higher-capacity and abuse-tolerant safer cathodes

- The long-term **stability** of the MnO₂ and NiO₂ lattice
 - LiMnO₂ converts to spinel on charging, losing 50% capacity 5888888
 - LiNiO₂ unsafe on charging, oxygen evolution
 - LiCoO₂ low capacity and too expensive
 - Determine optimum Li(MnNiCo)O₂ composition
 - Is 442 superior to 333?

- Capacity (volumetric) and rate of Olivines, LiFePO₄
 - A low cost synthesis/manufacturing process for LiFePO₄
 - Low cost material needs low cost process GO last year
 - The high electrical resistivity of LiFePO₄
 - Can substitution work?
 - Ideal particle size and morphology for reaction mechanism
 - Is a nanostructure, like the SONY tin anode, the answer?

b

а

C

6

- What is maximum Mn in Li(Ni_yMn_zCo_{1-y-z})O₂?
 - Mn is lowest cost and least likely to evolve O_2 on charging (safest)
 - Maximum Mn is 0.5 in lithium stoichiometric material
 - Rate suffers for Mn > 0.5 in lithium-rich materials
- The electrochemistry of LiNi_{0.4}Mn_{0.5}Co_{0.1}O₂ is good
 - Similar to LiNi_{0.45}Mn_{0.45}Co_{0.1}O₂; but note fading issue.

Cycling at 0.5 mA/cm², 2.5 to 4.6 volts

- What is optimum value of y?
 - 550, 991, 442 and 333
 - Low charging rate of 0.1 mA/cm²
 - Highest cobalt gives best capacity at higher rates
 - But 10% cobalt gives highest capacity at intermediate rates

- What is optimum value of y?
 - 550, 991, 442 and 333
 - Equal charging and discharging rates
 - LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ gives highest capacities
 - Suggests this phase has highest charge capabilities

Conclusion:

442 appears to show the best charging capability

Solid Solution Behavior of LiFePO₄

- LiFePO₄ can be substituted on both Fe and P sites
 - Vanadium substitution occurs on P site: LiFeP_{1-y}V_yO₄
 - Gives a nanostructured material
 - 50 nm crystallites in micron-sized particles
 - Leads to higher density
 - Higher capacity
 - Weight and volume basis

3 μm with 50 nm crystallites

Collaboration with C-S Wang at U. Maryland

Substituted LiFePO₄ shows high rate

- LiFeP_{1-y}V_yO₄ for y about 5%
 - Formed by firing samples ground in acetone
 - Needs much less carbon than nanopowders

- LiFeP_{1-y}V_yO₄ for y about 5%
 - Formed by firing samples ground in acetone
 - Needs much less carbon than nanopowders
 - Enhanced capacity
 - Gravimetric
 - Volumetric even more

Collaboration with C-S Wang at U. Maryland

Low Carbon Content critical for high capacity in LiFePO₄

- Volumetric capacity seriously impacted by:
 - High carbon content
 - Nano-materials with low tap density (not incorporated into figure)

- Nanostructure with low carbon content may be the answer
- PHEV needs around 1C to2C constant output
 - Capacity more important than power

Higher Capacity Cathodes: >1 Li/M

- Several materials react with more than 1 lithium
 - Initial studies underway to identify promising candidates
 - Vanadium oxides reviewed (with A. Dillon of NREL)
 - J. Mater. Chem., in press (2009)

Future Work

• $LiMO_2$:

- Determine charge capabilities of LiMO₂
 - Compare 991 and 442 with 333
 - Work with C. Grey and M. Doeff to understand ion ordering
- Understand why LiMO₂ capacity fades on cycling
 - Contrast LiFePO₄ and Li₄Ti₅O₁₂ where there is no fade

• Phosphates -

- Determine composition range of single-phase LiFeP_{1-y}V_yPO₄
- Find other iron phosphates with higher lithium contents
 - Higher capacity
- Identify materials that can undergo more than one electron per redox center
 - Perform extended cycling on phosphate to determine cycling loss
 - Determine reaction mechanism

Summary

- Substitution in LiFePO₄ shown to be feasible
 - Vanadium substitution on P site leads to nanostructure
 - Lower conductive carbon level
 - Higher capacities, particularly on a volumetric basis
 - Opens up opportunities for LiMnPO₄
- LiMn_{0.33}Ni_{0.33}Co_{0.33}O₂ composition may not be optimum
 - LiMn_{0.4}Ni_{0.4}Co_{0.2}O₂ may have better charging capabilities
 - LiMn_{0.45}Ni_{0.45}Co_{0.1}O₂ will have lowest cost
 - Need to better understand ordering in the transition-metal layer
 - Determine role of aluminum
- Technology transfer being accomplished
 - Students working with battery companies, e.g. Primet
 - Students in battery companies and at LBNL, NREL and PNNL
 - Publications to transfer knowledge
- Collaborations
 - A number of collaborations are underway and are effective
 - Industry, Academia and National Laboratories